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Abstract
Polycystic ovary syndrome (PCOS) is a complex class of endocrine disorders with insulin resistance,
compensatory hyperinsulinaemia and obesity. However, the pathogenesis and therapies of PCOS have
not been fully elucidated. Exosomal miRNAs have the potential to serve as biomarkers and therapies for a
wide range of medical conditions. In this study, we isolated exosomes from follicular fluid collected from
5 PCOS patients and 5 non-PCOS patients. miRNA cDNA library sequencing identified 124 miRNAs that
were significantly upregulated nearly twofold, while 33 miRNAs were significantly downregulated nearly
twofold in PCOS follicular fluid exosomes. These miRNA target genes were mainly involved in metabolic
pathways, pathways in cancer, the PI3K-Akt signalling pathway, the MAPK signalling pathway,
endocytosis, the Ras signalling pathway, the Hippo signalling pathway, and cellular senescence.
According to the previously reported exosomal lncRNA data of PCOS follicular fluid, a miRNA and lncRNA
coexpression network developed from data from starBase strictly screened 29 differentially expressed
miRNAs. This network also helped to identify miRNA signatures associated with metabolic processes in
PCOS. Collectively, these results demonstrate the potential pathogenesis of PCOS, and follicular fluid
exosomal miRNAs may be efficient targets for the diagnosis and treatment of PCOS in long-term clinical
studies.

Background
Polycystic ovary syndrome (PCOS) is a complex class of endocrine disorders with an overall incidence of
approximately 5–20% and a prevalence of 5.61% in Chinese women aged 19–45 years [1, 2]. PCOS is
defined by a combination of signs and symptoms of hyperandrogenaemia, ovarian dysfunction and
polycystic ovaries (PCOs). In the majority of PCOS individuals, metabolic dysfunction, characterized by
insulin resistance and compensatory hyperinsulinaemia, is obvious. PCOS is often complicated with
hyperinsulinaemia, dyslipidaemia, and obesity, as well as hypertension, heart disease and endometrial
cancer [3]. At present, the pathogenesis of PCOS has not been fully elucidated, and there is a lack of
precise treatment. Insulin resistance and compensatory hyperinsulinism lead to metabolic dysfunction,
which significantly contributes to the pathogenesis of PCOS [4]. Insulin tolerance is a metabolic state in
which human physiological levels of insulin promote a decrease in the glucose utilization ability of
tissues and cells. The body can maintain normal blood glucose levels only by compensatory increases in
insulin secretion, thus inducing hyperinsulinaemia [5]. On the one hand, hyperinsulinaemia directly
affects insulin receptors on ovarian theca cells, which affects the follicular development and pregnancy
of PCOS patients; on the other hand, insulin selectively affects tissue-specific metabolism, increases the
response sensitivity of ovarian theca cells to luteinizing hormone, and increases androgen secretion [6].
At the same time, higher insulin levels inhibit the synthesis of liver sex hormone binding globulin (SHBG),
further increase the level of free androgen, and affect the pregnancy and embryo implantation of PCOS
patients. High expression of androgen is also one of the causes of PCOS. The main cause of
hyperandrogenesis is an increase in testosterone, androgen and dehydroepiandrosterone sulfate.
Abnormal and immature oocytes exposed to high levels of androgen in the follicular fluid block the
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development of dominant follicles, stop the growth of follicles and even block the growth of follicles.
Furthermore, the endometrium is not resistant to progesterone due to the stimulation of oestrogen levels,
which increases the risk of endometrial cancer [7]. Increasing evidence suggests that PCOS may be a
complex polygenic disorder with a strong epigenetic influence. Eleven susceptibility loci were found in
Chinese women with polycystic ovary syndrome. Some of these genes, such as INSR, FSHR and c9orf3,
have been identified [8, 9]. Mendelian random analysis showed that single-nucleotide polymorphisms
associated with the risk of polycystic ovary syndrome had a causal relationship with higher body mass
index (BMI), insulin resistance and lower levels of sex hormone binding globulin (SHBG) in patients with
polycystic ovary syndrome. Other previously reported gene mutations, namely, in YAP1, THADA and
FSHB, have also been observed to have genome-wide significance [10]. It is worth noting that, to date, the
heritability of PCOS may not exceed 10% [11]. Therefore, it is urgent to explore the characteristics and
possible pathogenesis of PCOS from different aspects.

Exosomes are key mediators in different physiological and pathological processes and have played
increasingly important roles [12]. S100 calcium binding protein A9 (s100-a9) is enriched in PCOS
follicular fluid, and it can significantly enhance inflammation and destroy steroid production by activating
the nuclear factor-κ B (NF-κ b) signalling pathway [13]. The expression of DENND1A variant 2 mRNA was
significantly increased in urine exosomes from women with PCOS compared with normal cycling women
[14]. Exosomal miR-323-3p from adipose mesenchymal stem cells promoted proliferation and inhibited
the apoptosis of cumulus cells in a letrozole-induced PCOS mouse model [15]. During the cellular
inflammatory response, the composition of exosomal miRNAs is different from that of normal exosomes
[16]. It has been reported that the differential expression of plasma exosomal miRNAs may be related to
the occurrence of PCOS and help to differentiate PCOS patients from controls. These results may
contribute to the understanding of epigenetic modifications in PCOS pathophysiology [17]. However, there
are few studies on miRNAs in PCOS follicular fluid exosomes. The main purpose of this study was to
explore the expression profile of miRNAs in PCOS follicular fluid exosomes and to analyse their
potentially important role in the development of PCOS.

Method
Exosomes Isolation and Characterization

Both the PCOS patients and non-PCOS patients consented for sample collection and molecular testing
were approved by the the University of Hong Kong-Shenzhen Hospital Research Ethics Committee. All
investigations were conducted in accordance with the Helsinki Declaration. Exosomes were isolated from
1ml follicular fluid using System Bioscience (SBI) ExoQuick™ Exosome Precipitation Kit, according to the
supplier's protocols. Transmission electron microscopy were used to detect exosomes size and
characterization. In short, a copper mesh was placed on a clean wax plate and 100µl of the exosome
suspension was added. After 4 minutes, the copper mesh was removed and placed in 2%
phosphotungstic acid for 5 min. The mesh was laid on the filter paper to dry and TEM was used to
observe the morphological features of the exosomes [18]. The exosome pellet was dissolved in the
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protein lysis buffer, and the protein concentration was determined using a Bradford protein assay kit (Bio-
Rad Laboratories, Hercules, CA). Western blotting was used to check the marker of exosome via CD9 and
TSG101 primary antibodies (Abcam, Cambridge, UK).
RNA isolation from exosomes

Total RNA was isolated from 200 µl of exosomes suspension using TRIzol reagents (Invitrogen, USA).
RNA concentration was measured by Nanodrop 2000 spectrophotometer (Thermo Scientific) and stored
at − 80˚C. All solutions were prepared in RNase-free water and all methods were carried out in RNase-free
conditions.

miRNA sequencing and bioinformatics analysis

miRNA sequencing libraries were constructed by TruSeq Small RNA Library Prep Kit (Illumina1) following
manufacturer instructions. Sequencing libraries were sequenced with a NextSeq apparatus to generate ~ 
16 million single-end 75 bp reads per sample. Afterwards, sequencing reads were obtained the final
counts of miRNAs present in each sample. Briefly, adapter sequences were removed from sequencing
reads and the remaining sequences were compared against the human mature miRNA from miRbase
(release 22.1) (www. miRBase.org) using FANSe3 for miRNA identification, annotation and quantification.
Differential miRNA expression analysis (P < 0.05, log2|FC|>1) between groups of interest was carried out
with the R package EdgeR. To predict the genes targeted by differential miRNAs, miRTarBase
(http://mirtarbase.cuhk.edu.cn/php/index.php) was used to identify miRNA binding sites. In addition,
kyoto encyclopedia of genes and genomes (KEGG) pathway and gene ontology (GO) and pathway
analyses were performed to identify miRNA-related genes, pathways and GO terms based on sequencing
data sets. Cytoscape (www.cytoscape.org) was used to draw a miRNA-lncRNA network and the data
output was received in Excel spreadsheets.

RT-qPCR analysis

Total miRNAs from the follicular fluid exosomes were extracted using the TRIpure Total RNA Extraction
Reagent method (ELK Biotechnology, China). Real-time PCR was performed for validation using Mir-X
miRNA qRT-PCR TB Green® Kit (Takara, Kyoto, Japan). In a simple, single-tube reaction, RNA molecules
are polyadenylated and reverse transcribed using poly(A) polymerase. The relative microRNA levels were
normalized to U6 expression for each sample. The miRNA primers used in the study are presented in
Table 2. The reactions were performed with a Step One Plus Real-Time PCR System (Applied Biosystems)
and Step One software v2.1. The PCR reaction included a fast start step of 10 min at 95 ◦C followed by
45 cycles of amplification where each cycle consisted of denaturation at 95°C for 10 s, 58°C for 30 s, and
72°C for 30 s. Analyses of gene expression was performed by the he delta-delta Ct method. Each
experiment was repeated three times.

Statistical analysis

http://mirtarbase.cuhk.edu.cn/php/index.php
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Data are shown as the means ± standard deviations. The statistical significance of the results from three
independent assays was evaluated by Student’s t-test. P < 0.05 was considered to indicate statistically
significant differences.

Result
Comparison of clinical information between the PCOS group and the control group.

To ensure the reliability of the results of this study, the selected samples of this study were strictly
screened according to the Rotterdam criteria (2003). There were two groups (PCOS patients = 5, control
patients = 5) of patients, and their follicular fluid exosome samples were analysed. All enrolled
participants were diagnosed with primary infertility and received the same ovulation induction treatment
programme; they were between 26 and 36 years of age with a duration of infertility between 1 and 5
years. The results showed that there was no significant difference between the PCOS patients and the
non-PCOS patients in age, infertility, body mass index (BMI) and fasting blood glucose (FBG) levels. In
addition, the number of follicles and anti-Mullerian hormone (AMH) levels were clearly upregulated in the
PCOS patients, and there were patients with an LH/FSH > 1 in the PCOS group. The general clinical data
of the two groups of patients are shown in Table 1.

Table 1
Information of PCOS patients and non-PCOS donors

Parameter PCOS group (n = 5) Non-PCOS roup (n = 5) P value

Age 33.2 ± 2.4 30.4 ± 2.9 0.17

Infertility 2.4 ± 1.6 2.6 ± 1.6 0.84

BMI 23.402 ± 2.7 21.984 ± 1.7 0.39

FBG (mmol/L 4.85 ± 0.4 4.632 ± 0.3 0.41

E2(pg/ml) 49.8 ± 13.3 45.6 ± 12.6 0.66

Progesterone (ng/mL) 0.332 ± 0.13 0.46 ± 0.34 0.51

Testosterone (ng/mL) 0.502 ± 0.12 0.454 ± 0.14 0.63

FSH 5.704 ± 1.03 7.114 ± 0.8 0.07

PRL 10.788 ± 1.6 12.278 ± 3.1 0.41

LH 7.784 ± 3.8 4.992 ± 2.1 0.23

Number of follicles 25 ± 5.9 12.4 ± 5.2 0.01

AMH (ng/ml) 5.278 ± 2.1 1.94 ± 0.5 0.02

Abbreviations: BMI: body mass index; FBG: fasting blood glucose; LH: luteinizing hormone; AMH༚anti-
Mullerian hormone; PRL: serum prolactin; E2: estradiol; FSH: follicle-stimulating hormone;
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Table 2

Information of validated miRNAs.
miRNA miRbase ID Primers (5’— 3’)

hsa-miR-200c-3p MI0000650 TAATACTGCCGGGTAATGATGGA

hsa-miR-196a-3p MI0000238 CGGCAACAAGAAACTGCCTGAG

hsa-miR-199a-5p MI0000242 CCCAGTGTTCAGACTACCTGTTC

hsa-miR-143-5p MI0000459 GGTGCAGTGCTGCATCTCTGGT

hsa-miR-483-3p MI0002467 TCACTCCTCTCCTCCCGTCTT

hsa-miR-376a-3p MI0000784 ATCATAGAGGAAAATCCACGT

hsa-miR-542-3p MI0003686 TGTGACAGATTGATAACTGAAA

hsa-miR-21-5p MI0000077 TAGCTTATCAGACTGATGTTGA

hsa-miR-4322 MI0015851 CTGTGGGCTCAGCGCGTGGGG

hsa-miR-132-3p MI0000449 TAACAGTCTACAGCCATGGTCG

 

Differential expression of miRNA profiles in follicular fluid exosomes.

Exosomes were isolated from follicular fluid. Transmission electron microscopy (TEM) was used to
detect exosomes approximately 50–200 nm in diameter from all samples (Fig. 1A). Western blot analysis
was performed and revealed that two commonly used exosomal protein markers, namely, CD9 and
TSG101, were highly enriched in the isolated exosomes relative to PBS (Fig. 1B). The results showed that
exosomes from all follicular fluid samples were successfully purified. In total, 2457 miRNAs were
identified in follicular fluid exosomes from both PCOS patients and controls in this study. Among them,
157 mature miRNAs in follicular fluid exosomes were significantly differentially expressed in the PCOS
and control groups (P < 0.05, log2|FC|>1). The number of significantly upregulated miRNAs was 124, and
the number of downregulated miRNAs was 33, as indicated by a volcano plot and a heatmap (Fig. 1C-D).
To further validate the miRNA profiling results, ten miRNAs, hsa-miR-200c-3p, hsa-miR-196a-3p, hsa-miR-
199a-5p, hsa-miR-143-5p, hsa-miR-483-3p, hsa-miR-376a-3p, hsa-miR-542-3p, hsa-miR-21-5p, hsa-miR-
4322, and hsa-miR-132-3p, were randomly screened by RT-qPCR from PCOS patients and non-PCOS
patients. According to the RT-qPCR results, the trends in the expression of the miRNAs determined by RT-
qPCR were consistent with those obtained from RNA sequencing in PCOS and non-PCOS follicular fluid
exosome samples (Fig. 1E-F).

Functional annotation and identification of the differentially expressed miRNA target genes.
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KEGG pathway and GO analyses were performed to investigate the functions of 157 differentially
expressed miRNA target genes. Furthermore, KEGG pathway enrichment revealed that the target genes
were mainly involved in metabolic pathways, pathways in cancer, the PI3K-Akt signalling pathway, the
MAPK signalling pathway, endocytosis, the Ras signalling pathway, the Hippo signalling pathway, and
cellular senescence (Fig. 2A). GO enrichment analyses were also carried out to gain insight into the
biological characteristics of the miRNAs. Metabolic processes were very prominent in both the
significantly upregulated and downregulated miRNA target genes, including nucleic acid metabolic
process, cellular macromolecule metabolic process, and heterocycle metabolic process (Fig. 2B-C). These
results suggest that metabolic pathways possibly have great significance in the pathogenesis of PCOS.

Construction of the miRNA–lncRNA coexpression network

To further explore the epigenetic regulation of miRNAs, intersection analysis between miRNAs and
lncRNAs was performed in follicular fluid exosomes from PCOS and non-PCOS patients (Fig. 3A). The
differentially expressed lncRNAs in this study were strictly screened according to the previous research
results of Liping Wang et al [19]. There were 29 differentially expressed miRNAs constructed with 2439
differentially expressed lncRNAs in the coexpression network via the data from starBase (Table 3).
Subsequently, to further investigate the interconnections between the differentially expressed lncRNAs
and miRNAs involved in the metabolic pathways (hsa01100) in PCOS, the network was represented, and
the potential interaction was predicted (Fig. 3B). The results showed that the upregulated miRNAs, such
as miR-369-3p, miR-139-5p, miR-371a-3p, miR-143-5p, miR-199a-5p, miR-196a-3p, and miR-26a-2-3p,
reduced the expression of RDH10-AS1. In addition, NARF-IT1, AC090617.1, MZF1-AS1, AC009495.2,
LINC01564, AQP4-AS1, L34079.3, OSBPL10-AS1, PIK3CD-AS2, LINC01181, LINC00907, and SP2-AS1
were regulated by the differentially expressed miRNAs. These findings suggest that these miRNAs and
lncRNAs may play a role in the pathogenesis of PCOS.
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Table 3
miRNAs in the miRNA–lncRNA coexpression network.

miRNA logFC PValue DEG

hsa-miR-32-3p 6.254050282 5.30E-05 up_regulated

hsa-miR-200c-3p -3.579123 0.000297 down_regulated

hsa-miR-196a-3p 4.452656099 0.000452 up_regulated

hsa-miR-199a-5p 3.455170178 0.000694 up_regulated

hsa-miR-143-5p 3.350954732 0.001784 up_regulated

hsa-miR-26a-2-3p 3.256636073 0.0036 up_regulated

hsa-miR-21-5p 2.052289441 0.008091 up_regulated

hsa-miR-106a-3p 5.883950978 0.010317 up_regulated

hsa-miR-132-3p 1.840853713 0.01079 up_regulated

hsa-miR-125b-1-3p 2.656313696 0.011578 up_regulated

hsa-miR-15a-3p 2.743713774 0.013771 up_regulated

hsa-miR-19a-3p 1.906020762 0.014684 up_regulated

hsa-miR-299-3p 2.111979855 0.017976 up_regulated

hsa-miR-24-1-5p 2.479764956 0.022368 up_regulated

hsa-miR-369-3p 2.247301418 0.023098 up_regulated

hsa-miR-30e-5p 1.467721548 0.023425 up_regulated

hsa-miR-139-5p 2.089759187 0.026395 up_regulated

hsa-miR-129-1-3p 3.7326463 0.028161 up_regulated

hsa-miR-34a-5p 1.607443155 0.028537 up_regulated

hsa-miR-369-5p 2.00127731 0.028573 up_regulated

hsa-miR-371a-3p 3.85268939 0.032162 up_regulated

hsa-miR-181b-2-3p 5.270233934 0.032403 up_regulated

hsa-miR-23a-5p 1.507630692 0.03562 up_regulated

hsa-miR-376c-3p 1.639249701 0.040714 up_regulated

hsa-miR-19b-3p 1.724336734 0.041056 up_regulated

hsa-miR-20a-5p 1.308580728 0.042476 up_regulated

hsa-miR-101-5p 1.6811069 0.045046 up_regulated
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miRNA logFC PValue DEG

hsa-miR-376a-5p 2.293758046 0.046278 up_regulated

hsa-miR-199a-3p 1.52738784 0.047854 up_regulated

Discussion
To date, a variety of factors have been reported to be involved in the pathogenesis and clinical phenotype
of PCOS, such as excessive androgen synthesis, follicular atresia, and insulin resistance [20]. However,
the causes of PCOS are still unclear. Human follicular fluid contains hormones, growth factors, cytokines,
vitamins and cell metabolites. In addition, studies have shown that some molecular substances in
follicular fluid are closely related to follicular growth, fertilization, spontaneous abortion and PCOS. For
example, the content of orexin in follicular fluid is negatively correlated with follicular quality and embryo
development after in vitro fertilization [21]. The composition of metabolites in follicular fluid is also
different at all stages of follicular development [22]. Some proteins in the follicular fluid are closely
involved in glucose metabolism, lipoprotein metabolism, cell proliferation, insulin resistance and other
processes in PCOS patients [23]. These studies suggest that the information carried in follicular fluid is
an important entry point for the study of PCOS. A large amount of evidence has shown that the release of
membrane-sealed ventricular structures, such as exosomes and extracellular vesicles (EVSs), is an
effective mechanism of intercellular communication under normal physiological and pathological
conditions. Exosomes and extracellular vesicles in follicular fluid are considered carriers of information.
These exosomes may also be involved in the progression of polycystic ovary syndrome and other
diseases [24]. Therefore, this study explored the molecular characteristics of exosomal miRNAs in PCOS
follicular fluid and elucidated the potential role of these miRNAs by using bioinformatics tools.

PCOS is a multifactorial disease caused by endocrine and metabolic dysfunction, and in recent years, the
pathogenesis of polycystic ovary syndrome considered to be related to epigenetics. Many studies have
shown that miRNAs in the follicular fluid of patients with polycystic ovary syndrome are altered [25]. It
has been reported that the expression of hsa-miR-21 in PCOS plasma is upregulated, and hsa-miR-21
plays an important role in metabolic and immune system processes [26]. The results from the previous
study in plasma were consistent with the results from this study that demonstrated that the expression of
exosomal miR-21-5p in PCOS follicular fluid was upregulated. KEGG pathways and GO enrichment
analyses revealed that the miRNA target genes were mainly involved in the MAPK signalling pathway and
metabolic process. These biological functions have also been found to be associated with the activation
of follicular development using lncRNA and mRNA profiles of follicular fluid from mature and immature
ovarian follicles of PCOS patients [27]. Interestingly, the expression of exosomal miR-19 and miR-199 was
increased in follicular fluid samples from patients with PCOS in this study. In addition, there is strong
evidence that the activity and mRNA expression level of CYP19A1 and both miR-19 and miR-199 target
genes were decreased in patients with PCOS, and this was associated with decreased follicle size [28, 29].
These findings suggest that upregulated miR-19 and miR-199 may be the cause of PCOS. LncRNAs are a
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class of transcripts (> 200 nucleotides) lacking protein-coding capacity, and they function as competitive
endogenous RNAs (ceRNAs) and are significantly correlated with some clinical phenotypes in PCOS [30].
Previous studies have found that the expression levels of RDH10-AS1, NARF-IT1, AC090617.1, MZF1-AS1,
AC009495.2, LINC01564, AQP4-AS1, L34079.3, OSBPL10-AS1, PIK3CD-AS2, LINC01181, and LINC00907
were reduced in PCOS [19]. MZF1-AS1 has been reported to inhibit proline synthesis and neuroblastoma
progression [31]. AC009495.2 was associated with acute myeloid leukaemia, and it could differentiate
between acute myeloid leukaemia types and change the behaviour of acute myeloid leukaemia cells [32].
Energy stress-induced LINC01564 activated the serine synthesis pathway and facilitated hepatocellular
carcinogenesis [33]. AQP4-AS1 plays a potential role in breast cancer [34]. The lncRNA PIK3CD-AS2
promoted lung adenocarcinoma progression via YBX1-mediated suppression of the p53 pathway [35]. In
this study, these lncRNAs and differentially expressed miRNAs were used to construct a metabolic
pathway-associated lncRNA-miRNA network, which indicated the key mechanisms of PCOS.

Conclusion
Taken together, our results indicated that exosomal miRNAs from PCOS follicular fluid were involved in
the regulation of possible pathways, biological functions and cellular components of PCOS. Moreover,
our study constructed miRNA–lncRNA regulatory networks in follicular fluid exosomes, which have
crucial biological roles in the occurrence and development of PCOS. This study is of great significance in
revealing new mechanisms of polycystic ovary syndrome and suggesting possible therapeutic targets.
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Figure 1

Characterization of exosomes and differential expression of miRNA profiling in the follicular fluid
exosomes. A. Isolated exosomes micrograph of TEM. B. Exosome protein markers validation by western
blotting. C. Volcano plot of diff-expressed miRNAs between PCOS and NC (non-PCOS). D. Heatmap of
Volcano plot of diff-expressed miRNAs between PCOS and NC (non-PCOS). E-F. Validation the miRNA
profiling by RT-qPCR. means ± standard deviations (***P < 0.001).
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Figure 2

Enrichment analysis of the significantly diff-expressed miRNAs target genes. A. KEGG pathway
enrichment analysis of the significantly diff-expressed miRNAs target genes. B. GO analysis of the
significantly upregulated miRNAs target genes. C. GO analysis of the significantly downregulated miRNAs
target genes.

Figure 3

The miRNA–lncRNA co-expression network. A. A co-expression network with the significantly diff-
expressed miRNAs and lncRNAs in follicular fluid exosomes. B. miRNA-lncRNA co-expression network
related metabolic pathways (hsa01100) in follicular fluid exosomes.


